Issue 34, 2013

A tough double network hydrogel for cartilage tissue engineering

Abstract

To develop hydrogels with high mechanical strength for cell encapsulation and three-dimensional culture is a critical challenge for cartilage tissue engineering. In this study, novel double network (DN) hydrogels were fabricated and phosphate buffer solution (PBS) was used as the solvent to facilitate cell encapsulation. The tough DN hydrogels were prepared through a two-step photopolymerization using neutral oligo(2,2-dimethyltrimethylene carbonate)–poly(ethylene glycol)–oligo(2,2-dimethyltrimethylene carbonate)–diacrylate (DPD–DA) chains for the first network and methacrylated hyaluronic acid (HA–GMA) chains for the second network. The fracture stress values of the optimized and cell-laden DN hydrogels were 8.38 ± 0.67 MPa and 6.28 ± 1.26 MPa, respectively, which showed comparable mechanical strength with natural articular cartilage tissue. The live/dead cell viability assay of cell-laden DN hydrogels demonstrated the tough DN hydrogels have comparable cytocompatibility with PEG hydrogels. After long-term culture, cartilage-specific extra cellular matrix accumulated in these DN hydrogels. The results indicated the potential of the novel DN hydrogels as cartilage tissue engineering scaffolds.

Graphical abstract: A tough double network hydrogel for cartilage tissue engineering

Article information

Article type
Paper
Submitted
26 Apr 2013
Accepted
24 Jun 2013
First published
25 Jun 2013

J. Mater. Chem. B, 2013,1, 4251-4258

A tough double network hydrogel for cartilage tissue engineering

C. Fan, L. Liao, C. Zhang and L. Liu, J. Mater. Chem. B, 2013, 1, 4251 DOI: 10.1039/C3TB20600A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements