Issue 3, 2013

Highly efficient green phosphorescent OLEDs based on a novel iridium complex

Abstract

A new iridium(III) complex Ir(tfmppy)2(tfmtpip) (1, tfmppy = 4-trifluoromethylphenyl-pyridine, tfmtpip = tetra(4-trifluoromethylphenyl)imidodiphosphinate) was synthesized and applied in organic light-emitting diodes (OLEDs). The devices with the structures of ITO/TAPC (1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane, 40 nm)/1 (x wt%): mCP (N,N′-dicarbazolyl- 3,5-benzene, 20 nm)/TmPyPB (1,3,5-tri(m-pyrid-3-yl-phenyl)benzene, 40 nm)/LiF (1 nm)/Al (100 nm) exhibited a maximum power efficiency (ηp,max) of 113.23 lm W−1 and a maximum current efficiency (ηc,max) of 115.39 cd A−1 (0.01342 mA cm2) at the doping level of 5 wt%, which is among the best performances for Ir(III) complex based OLEDs in the green-light-emitting region. Compared with our former work, the excellent device efficiencies are due to the use of TmPyPB as the electron-transporting/hole-blocking layer which has a relatively higher electron mobility than that of TPBi (2,2′,2′′-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) and the introduction of the –CF3 moiety to the Ir(III) complex, which can increase the electron mobility of the complex. The device performances proved that the complex has potential applications as an efficient green emitter in OLEDs.

Graphical abstract: Highly efficient green phosphorescent OLEDs based on a novel iridium complex

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2012
Accepted
31 Oct 2012
First published
31 Oct 2012

J. Mater. Chem. C, 2013,1, 560-565

Highly efficient green phosphorescent OLEDs based on a novel iridium complex

H. Li, L. Zhou, M. Teng, Q. Xu, C. Lin, Y. Zheng, J. Zuo, H. Zhang and X. You, J. Mater. Chem. C, 2013, 1, 560 DOI: 10.1039/C2TC00052K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements