Issue 36, 2013

How do substituents affect silole emission?

Abstract

Researchers are in constant pursuit of solid-state emitters with high emission efficiency, excellent photostability and large Stokes shift. Among them, siloles are good representatives. In this paper, we report the effect of substituent on the emission of silole. 1,1,3,4-Tetraphenylsilole (TPS) is weakly emissive at 392 nm in both solution and aggregated states. Progressive attachment of the trimethylsilylethynylphenyl (TMSEP) group to the 2,5-positions of TPS generates TPE–TMSEP and TPS–2TMSEP, which emit intensely at 491 nm and 517 nm, respectively, in the condensed phase despite their solutions giving almost no light upon photoexcitation. High solid-state quantum yields of up to 91% are deduced from their solid powders, demonstrating a phenomenon of aggregation-induced emission (AIE). Restriction of the low-frequency motions is proved to be the main cause of the AIE effect. Conformational study and theoretical calculation show that the steric and electronic effects contributed by the 3,4- and 2,5-substituents are crucial for the silole emission.

Graphical abstract: How do substituents affect silole emission?

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2013
Accepted
17 Jul 2013
First published
17 Jul 2013

J. Mater. Chem. C, 2013,1, 5661-5668

How do substituents affect silole emission?

E. Zhao, J. W. Y. Lam, Y. Hong, J. Liu, Q. Peng, J. Hao, H. H. Y. Sung, I. D. Williams and B. Z. Tang, J. Mater. Chem. C, 2013, 1, 5661 DOI: 10.1039/C3TC30880D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements