Issue 39, 2013

Formation of interfacial traps upon surface protonation in small molecule solution processed bulk heterojunctions probed by photoelectron spectroscopy

Abstract

This work expands on the recently reported protonation of the donor molecule 7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(4-(5′-hexyl-[2,2′-bithiophen]-5-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine) (d-DTS(PTTh2)2) by the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayer to include an electrostatic picture of interfacial energetic states. Ultraviolet photoemission spectroscopy results initially suggested favorable band level alignment for hole extraction between d-DTS(PTTh2)2 and PEDOT:PSS. However photovoltaic device performance yields a low fill factor and photovoltage, indicative of poor hole-extraction at the hole-collecting interface, relative to the nickel oxide device. Further investigation into the interfacial composition via theory and X-ray photoelectron studies of both the interface and a control system of d-DTS(PTTh2)2 reacted with p-toluenesulfonic acid verify the presence of a chemically unique species at the interface arising from protonation reaction with the residual acidic protons present in PEDOT:PSS that was masked in the UPS experiment. From these results, the energy band diagram is re-interpreted to account for the interfacial chemical reaction and modified interfacial density of states. Additionally, the detrimental protonation reaction is avoided when the pyridyl[1,2,5]thiadiazole acceptor unit was replaced with a 5-fluorobenzo[c][1,2,5]thiadiazole acceptor unit, which shows no such reaction with the PEDOT:PSS substrate. These results indicate the necessity of using a large analytical toolkit to elucidate the energetics and mechanisms of buried interfaces that will impact dynamics of hole collection.

Graphical abstract: Formation of interfacial traps upon surface protonation in small molecule solution processed bulk heterojunctions probed by photoelectron spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2013
Accepted
07 Aug 2013
First published
09 Aug 2013

J. Mater. Chem. C, 2013,1, 6223-6234

Formation of interfacial traps upon surface protonation in small molecule solution processed bulk heterojunctions probed by photoelectron spectroscopy

E. L. Ratcliff, R. C. Bakus II, G. C. Welch, T. S. van der Poll, A. Garcia, S. R. Cowan, B. A. MacLeod, D. S. Ginley, G. C. Bazan and D. C. Olson, J. Mater. Chem. C, 2013, 1, 6223 DOI: 10.1039/C3TC31064G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements