Issue 41, 2013

First principles investigation on the stability, magnetic and electronic properties of the fully and partially hydrogenated BN nanoribbons in different conformers

Abstract

Based on first-principles computations, the geometries, stabilities, electronic and magnetic properties of fully and partially hydrogenated boron nitride nanoribbons (BNNRs) were investigated. Our results from the theoretical computation revealed that the boat and stirrup configurations were the most stable ones among the boat, chair and stirrup configurations for zigzag and armchair fully hydrogenated BNNRs, respectively. The fully hydrogenated 10-zBNNRs exhibited energetically degenerated ferromagnetic (FM) and ferrimagnetic (MFM) states for the boat and chair configurations. In the FM state, they showed metallic behavior, whereas in the MFM state, only the energy levels in the spin-down channel cross the Fermi-level, indicating the corresponding half-metallic feature. Moreover, intrinsic MFM half-metallic behavior can be observed in stirrup fully hydrogenated 10-zBNNRs. However, all of the fully hydrogenated 15-aBNNRs were nonmagnetic wide-band-gap semiconductors. By hydrogenating the zigzag BNNRs (zBNNRs) from the edge(s) step by step in a boat manner, we provide an effective approach to enrich the electronic and magnetic properties of zBNNRs and the transition of NM wide-gap semiconductor → NM narrow-gap semiconductor → energetically degenerated FM/MFM(AFM) metal/half-metal → FM metal → MFM half-metal can be achieved by controlling the hydrogenation patterns and ratios. These appealing features, especially the diverse electronic and magnetic transitions, in the unitary BNNR-based nanostructures may provide tremendous potential applications for integrated multi-functional and spintronic nanodevices.

Graphical abstract: First principles investigation on the stability, magnetic and electronic properties of the fully and partially hydrogenated BN nanoribbons in different conformers

Supplementary files

Article information

Article type
Paper
Submitted
22 Jul 2013
Accepted
02 Sep 2013
First published
03 Sep 2013

J. Mater. Chem. C, 2013,1, 6890-6898

First principles investigation on the stability, magnetic and electronic properties of the fully and partially hydrogenated BN nanoribbons in different conformers

Z. Shi, X. Zhao and X. Huang, J. Mater. Chem. C, 2013, 1, 6890 DOI: 10.1039/C3TC31417K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements