Issue 13, 2014

A novel electrochemical method to determine α-amylase activity

Abstract

In this paper, we report a novel electrochemical method that can be developed as a biosensor for simple and direct determination of α-amylase activity. The method is based on the hydrolysis of maltopentaose, the substrate of the enzyme, which is immobilized on the surface of a gold electrode, and the induced charge changes of the substrate-modified electrode. Specifically, the substrate maltopentaose is immobilized onto a gold electrode surface via a simple and direct immobilization technique that involves a one-step and site-specific attachment of unmodified maltopentaose to the hydrazide-derivatized surface. So, by analyzing the electrochemical signal obtained from the electro-active molecule [Ru(NH3)5Cl]2+ during the hydrolysis of maltopentaose, the determination of α-amylase activity is achieved. Under optimized conditions, α-amylase activity can be assayed with a detection limit of 0.022 U mL−1. The biosensor exhibits a rapid response, good stability and anti-interference ability. Furthermore, the biosensor has also been successfully applied to detect α-amylase in human serum, which shows acceptable accuracy compared to the currently used clinical method. The proposed method in this work may also have potential application of α-amylase determination in real blood samples, diagnostics and food production in the future.

Graphical abstract: A novel electrochemical method to determine α-amylase activity

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2013
Accepted
15 Apr 2014
First published
16 Apr 2014

Analyst, 2014,139, 3429-3433

A novel electrochemical method to determine α-amylase activity

J. Zhang, J. Cui, Y. Liu, Y. Chen and G. Li, Analyst, 2014, 139, 3429 DOI: 10.1039/C3AN01839C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements