Identifying the lineages of individual cells in cocultures by multivariate analysis of Raman spectra†
Abstract
The cellular and matrix cues that induce stem cell differentiation into distinct cell lineages must be identified to permit the ex vivo expansion of desired cell populations for clinical applications. Combinatorial biomaterials enable screening multiple different microenvironments while using small numbers of rare stem cells. New methods to identify the phenotypes of individual cells in cocultures with location specificity would increase the efficiency and throughput of these screening platforms. Here, we demonstrate that partial least-squares discriminant analysis (PLS-DA) models of calibration Raman spectra from cells in pure cultures can be used to identify the lineages of individual cells in more complex culture environments. The calibration Raman spectra were collected from individual cells of four different lineages, and a PLS-DA model that captured the Raman spectral profiles characteristic of each cell line was created. The application of these models to Raman spectra from test sets of cells indicated individual, fixed and living cells in separate monocultures, as well as those in more complex culture environments, such as cocultures, could be identified with low error. Cells from populations with very similar biochemistries could also be identified with high accuracy. We show that these identifications are based on reproducible cell-related spectral features, and not spectral contributions from the culture environment. This work demonstrates that PLS-DA of Raman spectra acquired from pure monocultures provides an objective, noninvasive, and label-free approach for accurately identifying the lineages of individual, living cells in more complex coculture environments.