Issue 17, 2014

Fluorescence quenching studies of CTAB stabilized perylene nanoparticles for the determination of Cr(vi) from environmental samples: spectroscopic approach

Abstract

Cetyl trimethyl ammonium bromide (CTAB) stabilized perylene nanoparticles (PNPs) were prepared by a modified reprecipitation method in aqueous solution under ultrasonic treatment. A spectrofluorimetric method for the quantitative determination of hexavalent chromium (Cr(VI), dichromate species) based on the fluorescence (FL) quenching of CTAB-stabilized PNPs (CTAB-PNPs) in aqueous solution was proposed. Under the most favourable conditions, the FL intensity of PNPs monitored at an excitation wavelength of λex = 382 nm was quenched by the successive addition of increasing concentrations of dichromate ions. The FL quenching results were found to fit the Stern–Volmer (S–V) relationship in the range of 0.5–50 μg mL−1 with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.008 μg mL−1. The method based on FL quenching was successfully applied for the quantitative analysis of Cr(VI) in water samples collected from different environments.

Graphical abstract: Fluorescence quenching studies of CTAB stabilized perylene nanoparticles for the determination of Cr(vi) from environmental samples: spectroscopic approach

Article information

Article type
Paper
Submitted
30 Apr 2014
Accepted
20 Jun 2014
First published
20 Jun 2014

Anal. Methods, 2014,6, 6948-6955

Author version available

Fluorescence quenching studies of CTAB stabilized perylene nanoparticles for the determination of Cr(VI) from environmental samples: spectroscopic approach

D. K. Dalavi, D. P. Bhopate, A. S. Bagawan, A. H. Gore, N. K. Desai, A. A. Kamble, P. G. Mahajan, G. B. Kolekar and S. R. Patil, Anal. Methods, 2014, 6, 6948 DOI: 10.1039/C4AY01027B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements