Issue 57, 2014

Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials

Abstract

The design and synthesis of novel examples of multifunctional magnetic materials based on the so-called coordination polymers (CPs) have become very attractive for chemists and physicists due to their potential applications in nanoscience and nanotechnology. However, their preparation is still an experimental challenge, which requires a deep knowledge of coordination chemistry and large skills in organic chemistry. The recent advances in this field using a molecular-programmed approach based on rational self-assembly methods which fully exploit the versatility of the coordination chemistry of the barely explored and evergreen family of N-substituted aromatic oligo(oxamato) ligands are presented in this feature article. These exploratory studies have revealed a wide variety of interesting multifunctional magnetic materials such as optically-active chiral and luminescent magnets or dynamic porous magnets as candidates for chemical sensing. Our feeling, however, is that we have only scratched the surface of the topic and that there are many more exciting brand-new molecule-based materials waiting to be discovered.

Graphical abstract: Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials

Article information

Article type
Feature Article
Submitted
07 Mar 2014
Accepted
28 Mar 2014
First published
28 Mar 2014

Chem. Commun., 2014,50, 7569-7585

Author version available

Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials

T. Grancha, J. Ferrando-Soria, M. Castellano, M. Julve, J. Pasán, D. Armentano and E. Pardo, Chem. Commun., 2014, 50, 7569 DOI: 10.1039/C4CC01734J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements