Structural effect on the resistive switching behavior of triphenylamine-based poly(azomethine)s†
Abstract
Linear and hyperbranched poly(azomethine)s (PAMs)-based on triphenylamine moieties are synthesized and used as the functioning layers in the Ta/PAM/Pt resistive switching memory devices. Comparably, the hyperbranched PAM with isotropic architecture and semi-crystalline nature shows enhanced memory behaviors with more uniform distribution of the HRS and LRS resistances.