One-dimensional coordination polymers constructed from di- and trinuclear {3d–4f} tectons. A new useful spacer in crystal engineering: 1,3-bis(4-pyridyl)azulene†
Abstract
Four new heterometallic 3d–4f complexes have been obtained using bi- and trinuclear building blocks: 1∞[Ni(L1)Gd(NO3)3(azbbpy)]·CH3CN (1), [Zn(L1)Eu(NO3)3(azbbpy)]·H2O (2), 1∞[(CuL2)2Gd(NO3)2(dca)] 3 and 1∞[(NiL2)2Dy(H2O)4(oxy-bbz)]NO3·3H2O (4), [H2L1 = 1,3-propanediyl-bis(2-iminomethylene-6-methoxyphenol), H2L2 = 2,6-di(acetoacetyl)pyridine, azbbpy = 1,3-bis(4-pyridyl)azulene, dca− = dicyanamide anion, and oxy-bbz = the dianion of the 4,4′-oxy-bis(benzoic) acid]. 1 and 2 represent the first complexes containing 1,3-bis(4-pyridyl)azulene as a ligand. 1, 3, and 4 are one-dimensional coordination polymers constructed from heterometallic nodes connected by the exo-dentate ligands. Helical chains are assembled in the case of 4. The analysis of the packing diagram for 1 reveals the occurrence of π–π stacking interactions established between the azulene rings from neighboring chains, which lead to supramolecular layers. The magnetic properties of 3 in the temperature range 1.9–300 K have been investigated. Intra-node ferromagnetic interactions are established between the CuII and GdIII ions (J = +2.7 cm−1, Ĥ = −J(ŜCu·ŜGd + ŜCu·ŜGd).