Issue 41, 2014

Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx

Abstract

The hydride reduction of a tetragonal layered perovskite LaSrCoO4 is known to yield orthorhombic LaSrCoO3H0.7 with a complete hydride/oxide order within the ab plane. In this study, epitaxial thin films of LaSrCoO4 with a-axis and c-axis orientations have been deposited on (100) and (001) LaSrAlO4 (LSAO) substrates, respectively, and allowed to react with hydride to convert into oxyhydrides. X-ray diffraction, secondary ion mass spectroscopy and thermal desorption spectroscopy experiments indicate that both films are topochemically reduced and can integrate hydride ions with a chemical composition close to that obtained for the powder. A significant reduction in the a-axis was observed for the a-axis oriented LaSrCoO3H0.7 film, indicating hydride/oxide order, as previously reported. In contrast, the c-axis oriented LaSrCoO3H0.7 film remains tetragonal, suggesting hydride/oxide disorder. These results demonstrate that strain engineering can lead to new materials with designed anion arrangement in mixed anion materials.

Graphical abstract: Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx

Article information

Article type
Paper
Submitted
20 Jun 2014
Accepted
20 Aug 2014
First published
10 Sep 2014

CrystEngComm, 2014,16, 9669-9674

Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi and H. Kageyama, CrystEngComm, 2014, 16, 9669 DOI: 10.1039/C4CE01268B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements