Issue 4, 2014

A theoretical study of the activity in Rh-catalysed hydroformylation: the origin of the enhanced activity of the π-acceptor phosphinine ligand

Abstract

The factors governing the activity in Rh-catalyzed hydroformylation were investigated using a set of computational tools. We performed DFT calculations on the phosphinine-modified Rh catalyst [HRh(CO)3(PC5H2R3)] and compared it to the phosphane-modified HRh(CO)3(PR3) and HRh(CO)2(PR3)2 complexes. The π-acceptor phosphinine ligand coordinates preferentially at the equatorial site of the pentacoordinated Rh complex with the heterocycle perpendicular to the equatorial plane, although the ligand freely rotates around the Rh–P bond. The overall energy barrier can be divided into the following contributions: alkene complex formation, alkene rotation and alkene insertion. In the absence of steric effects (model systems), the overall barrier correlates with the computed barrier for alkene rotation. This proves that π-acceptor ligands reduce back-donation to the alkene, leading to a lower rotational barrier and, consequently, to a higher activity. The Rh–P donor–acceptor interactions were quantified using a modified version of energy decomposition analysis (EDA). In Rh–phosphinine systems, the efficient directionality of the π-back-donation, rather than the overall acceptor ability, is responsible for the high catalytic activity. Introducing steric effects increases the energy required to coordinate the alkene, increasing the overall barrier. The factors governing the activity in Rh–monophosphane catalysts seem to be related to those derived for Rh–diphosphane during the development of a QSAR model (Catal. Sci. Technol. 2012, 2, 1694). To investigate whether the findings for mono- can be extrapolated to diphosphane ligands, we re-examined our previous QSAR model using the Topological Maximum Cross Correlation (TMACC) method based on easy-to-interpret 2D-descriptors. The TMACC descriptors highlight heteroatoms close to phosphorus as activity-increasing atoms, whereas highly substituted carbon atom groups are highlighted as activity-decreasing groups.

Graphical abstract: A theoretical study of the activity in Rh-catalysed hydroformylation: the origin of the enhanced activity of the π-acceptor phosphinine ligand

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2013
Accepted
06 Jan 2014
First published
07 Jan 2014

Catal. Sci. Technol., 2014,4, 979-987

Author version available

A theoretical study of the activity in Rh-catalysed hydroformylation: the origin of the enhanced activity of the π-acceptor phosphinine ligand

S. Aguado-Ullate, J. A. Baker, V. González-González, C. Müller, J. D. Hirst and J. J. Carbó, Catal. Sci. Technol., 2014, 4, 979 DOI: 10.1039/C3CY00956D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements