Issue 8, 2014

Transformations of polyols to organic acids and hydrogen in aqueous alkaline media

Abstract

In this paper we show that carbon nanofiber supported copper and nickel nanoparticles can selectively transform ethylene glycol and glycerol into value added oxygenates (organic acids) under anaerobic aqueous conditions. During aqueous phase oxidation Cu based catalysts showed a nearly quantitative yield (96% selectivity at 82% conversion) of glycolic acid from ethylene glycol. The reaction was carried out under alkaline conditions at relatively mild temperatures (150–180 °C) and produced H2 as co-product. The high selectivity towards glycolic acid was independent of the temperature. For glycerol oxidation a high selectivity (67% at full conversion) towards lactic acid was observed using Cu with competitive formation of glyceric acid, 1,2-propanediol tartronic acid and formation of H2 as co-product. The activity of Ni was comparable to that of Cu but it was less selective for the formation of desired oxygenates, glycolic acid (31%) and lactic acid (24%), due to the formation of formic acid.

Graphical abstract: Transformations of polyols to organic acids and hydrogen in aqueous alkaline media

Associated articles

Article information

Article type
Paper
Submitted
25 Feb 2014
Accepted
22 May 2014
First published
09 Jun 2014

Catal. Sci. Technol., 2014,4, 2353-2366

Author version available

Transformations of polyols to organic acids and hydrogen in aqueous alkaline media

T. van Haasterecht, T. W. van Deelen, K. P. de Jong and J. H. Bitter, Catal. Sci. Technol., 2014, 4, 2353 DOI: 10.1039/C4CY00249K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements