Issue 17, 2014

A theoretical study on tuning the electronic structures and photophysical properties of newly designed platinum(ii) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters

Abstract

By imitating FIrpic, seven new platinum(II) complexes with pic (pic = picolinate) ligand have been designed to be guest materials by means of adding different substituents to functionalized ligands (ppy and fpy, ppy = phenylpyridyl-N,C and fpy = 2-(9′,9′-diethyl-9H-fluorenyl)pyridyl-N,C). In order to reveal their molecular structures, photophysical properties and structure–property relationships with typical host materials, an in-depth theoretical investigation was performed via quantum chemical calculations. The electronic structures and photophysical properties of these complexes were investigated by density functional theory (DFT) and time-dependent density functional theory (TDDFT) using the B3LYP functional with LANL2DZ and 6-31G* basis sets. It turns out that electronic structures and photophysical properties can be tuned by substituent modifications on functionalized ligands. This work highlights that the match between guest materials and host materials in typical OLED structures can be weighed by the energy levels of the HOMO and LUMO and the adiabatic triplet energy of each complex. Also, a combined analysis of electronic structures, host–guest match, reorganization energies (λ) and triplet exciton generation fraction (χT) is helpful in exploring triplet emitters with high phosphorescence efficiency in OLEDs, which is an interesting and creative aspect of this work. Thereinto, λ reveals the capability of carrier transport and the balance between holes and electrons, whilst structural parameters and d-orbital splittings show that those complexes that have strong electron-withdrawing and electron-donating groups are nonemissive. Consequently, complexes 3–7 can be better triplet emitters than FIrpic. Moreover, the emission colors could be predicted by the 0–0 transition energy (E0–0) instead of the triplet vertical transition energy (Evert). Accordingly, complexes 3, 4 and 6 would be efficient phosphorescent materials with different predicted emission colors.

Graphical abstract: A theoretical study on tuning the electronic structures and photophysical properties of newly designed platinum(ii) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2013
Accepted
29 Jan 2014
First published
29 Jan 2014

Dalton Trans., 2014,43, 6500-6512

Author version available

A theoretical study on tuning the electronic structures and photophysical properties of newly designed platinum(II) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters

L. Zhang, L. Tian, M. Li, R. He and W. Shen, Dalton Trans., 2014, 43, 6500 DOI: 10.1039/C3DT53209G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements