Thermal structural characterization of the acentric layered perovskite LiHSrTa2O7: X-ray and neutron diffraction, SHG and Raman experiments
Abstract
The present work concerns the thermal structural characterization of the acentric Ruddlesden–Popper LiHSrTa2O7. A previous study, performed with powder neutron diffraction data, has revealed that at room temperature, LiHSrTa2O7 crystallizes in the Ama2 space group and that the acentric character is mainly due to the unequal distribution of the Li+ and H+ cations on their sites. In this new paper, the thermal behaviour has been studied by several techniques: powder X-ray and neutron diffraction, SHG experiments and Raman spectroscopy. All of them have revealed that LiHSrTa2O7 undergoes a reversible structural transition from an orthorhombic to a tetragonal symmetry around 200 °C. This transition is associated with the progressive vanishing of the TaO6 octahedra tilting, becoming completely straight in the high temperature form (S.G. I4/mmm), and with a variation of the Li+ and H+ distribution in the interlayer spacing.