Issue 45, 2014

Synthesis, characterization, and reactivity studies of a water-soluble bis(alkoxo)(carboxylato)-bridged diMnIII complex modeling the active site in catalase

Abstract

A new diMnIII complex, Na[Mn2(5-SO3-salpentO)(μ-OAc)(μ-OMe)(H2O)]·4H2O, where 5-SO3-salpentOH = 1,5-bis(5-sulphonatosalicylidenamino)pentan-3-ol, has been prepared and characterized. ESI-mass spectrometry, paramagnetic 1H NMR, EPR and UV-visible spectroscopic studies on freshly prepared solutions of the complex in methanol and 9 : 1 methanol–water mixtures showed that the compound retains the triply bridged bis(μ-alkoxo)(μ-acetato)Mn23+ core in solution. In the 9 : 1 methanol–water mixture, slow substitution of acetate by water molecules took place, and after one month, the doubly bridged diMnIII complex, [Mn2(5-SO3-salpentO)(μ-OMe)(H2O)3]·5H2O, formed and could be characterized by X-ray diffraction analysis. In methanolic or aqueous basic media, acetate shifts from a bridging to a terminal coordination mode, affording the highly stable [Mn2(5-SO3-salpentO)(μ-OMe)(OAc)] anion. The efficiency of the complex in disproportionating H2O2 depends on the solvent and correlates with the stability of the complex (towards metal dissociation) in each medium: basic buffer > aqueous base > water. The buffer preserves the integrity of the catalyst and the rate of O2 evolution remains essentially constant after successive additions of excess of H2O2. Turnovers as high as 3000 mol H2O2 per mol of catalyst, without significant decomposition and with an efficiency of kcat/KM = 1028 M−1 s−1, were measured for the complex in aqueous buffers of pH 11. Kinetic and spectroscopic results suggest a catalytic cycle that runs between MnIII2 and MnIV2 oxidation states, which is consistent with the low redox potential observed for the MnIII2/MnIIIMnIV couple of the catalyst in basic medium.

Graphical abstract: Synthesis, characterization, and reactivity studies of a water-soluble bis(alkoxo)(carboxylato)-bridged diMnIII complex modeling the active site in catalase

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2014
Accepted
18 Sep 2014
First published
19 Sep 2014

Dalton Trans., 2014,43, 17145-17155

Synthesis, characterization, and reactivity studies of a water-soluble bis(alkoxo)(carboxylato)-bridged diMnIII complex modeling the active site in catalase

C. Palopoli, C. Duhayon, J. Tuchagues and S. Signorella, Dalton Trans., 2014, 43, 17145 DOI: 10.1039/C4DT01907E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements