Issue 3, 2014

Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells

Abstract

We present an optical-design approach that improves the short-circuit current and efficiency of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells by tuning the thickness of the upper-device layers in order to maximize transmission into the CZTSSe absorber. The design approach combines optical modeling of idealized planar devices with a semi-empirical approach for treating the impact of surface roughness. Experimentally, we demonstrate that the new device architecture — which emphasizes thinner CdS and transparent-conducting layers — increases short-circuit current by about 10% in champion-caliber devices. These improvements are directly realized in the power-conversion efficiencies of CZTSSe devices, resulting in a certified improvement in the overall record power-conversion efficiency for CZTSSe from 11.1% to 12.0%. We also report comparable improvements for devices with band gaps in the range of 1.1–1.3 eV.

Graphical abstract: Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2014
Accepted
21 Oct 2013
First published
22 Oct 2013

Energy Environ. Sci., 2014,7, 1029-1036

Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells

M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov and D. B. Mitzi, Energy Environ. Sci., 2014, 7, 1029 DOI: 10.1039/C3EE42541J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements