Issue 1, 2014

Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume

Abstract

A new type of hierarchically porous carbon (HPC) structures of simultaneously high surface area and high pore volume has been synthesised from carefully controlled carbonization of in-house optimised metal–organic frameworks (MOFs). Changes in synthesis conditions lead to millimetre-sized MOF-5 crystals in a high yield. Subsequent carbonization of the MOFs yield HPCs with simultaneously high surface area, up to 2734 m2 g−1, and exceptionally high total pore volume, up to 5.53 cm3 g−1. In the HPCs, micropores are mostly retained and meso- and macro- pores are generated from defects in the individual crystals, which is made possible by structural inheritance from the MOF precursor. The resulting HPCs show a significant amount of CO2 adsorption, over 27 mmol g−1 (119 wt%) at 30 bar and 27 °C, which is one of the highest values reported in the literature for porous carbons. The findings are comparatively analysed with the literature. The results show great potential for the development of high capacity carbon-based sorbents for effective pre-combustion CO2 capture and other gas and energy storage applications.

Graphical abstract: Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume

Supplementary files

Article information

Article type
Communication
Submitted
29 Aug 2013
Accepted
14 Oct 2013
First published
21 Oct 2013
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2014,7, 335-342

Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume

G. Srinivas, V. Krungleviciute, Z. Guo and T. Yildirim, Energy Environ. Sci., 2014, 7, 335 DOI: 10.1039/C3EE42918K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements