Optically transparent hydrogen evolution catalysts made from networks of copper–platinum core–shell nanowires†
Abstract
This article reports the fabrication of copper–platinum core–shell nanowires by electroplating platinum onto copper nanowires, and the first demonstration of their use as a transparent, conducting electrocatalyst for the hydrogen evolution reaction (HER). Cu–Pt core–shell nanowire networks exhibit mass activities up to 8 times higher than carbon-supported Pt nanoparticles for the HER. Electroplating minimizes galvanic replacement, allowing the copper nanowires to retain their conductivity, and eliminating the need for a conductive substrate or overcoat. Cu–Pt core–shell nanowire networks can thus replace more expensive transparent electrodes made from indium tin oxide (ITO) in photoelectrolysis cells and dye sensitized solar cells. Unlike ITO, Cu–Pt core–shell nanowire films retain their conductivity after bending, retain their transmittance during electrochemical reduction, and have consistently high transmittance (>80%) across a wide optical window (300–1800 nm).