Issue 11, 2014

Organic photoelectrochemical cells with quantitative photocarrier conversion

Abstract

Efficient solar-to-fuel conversion could be a cost-effective way to power the planet using sunlight. Herein, we demonstrate that Organic Photoelectrochemical Cells (OPECs) constitute a versatile platform for the efficient production of solar fuels. We show that the photogenerated carriers at the organic active layer can be quantitatively extracted to drive photoelectrochemical reactions at the interface with a liquid solution. Indeed, an unprecedented photocurrent of 4 mA cm−2 is extracted for an OPEC device, comparable to that of a solid-state device with similar optical properties. Through the careful choice of the selective contact and the redox couple in the liquid medium, we can tune the energetics of the system and activate either oxidative or reductive chemistry. The design rules to drive the desired electrochemical reaction are provided based on a comprehensive study of the energetic aspects of OPEC configuration. Finally, we demonstrate that OPEC devices effectively produce hydrogen in acetonitrile when a cobaloxime based homogeneous catalyst is present in the solution, and HCl is used a source of protons.

Graphical abstract: Organic photoelectrochemical cells with quantitative photocarrier conversion

Supplementary files

Article information

Article type
Paper
Submitted
10 Jun 2014
Accepted
07 Aug 2014
First published
07 Aug 2014

Energy Environ. Sci., 2014,7, 3666-3673

Author version available

Organic photoelectrochemical cells with quantitative photocarrier conversion

A. Guerrero, M. Haro, S. Bellani, M. R. Antognazza, L. Meda, S. Gimenez and J. Bisquert, Energy Environ. Sci., 2014, 7, 3666 DOI: 10.1039/C4EE01775G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements