Issue 5, 2014

Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom?

Abstract

Nanoceria is an exceptionally versatile, commercially valuable catalytic material whose properties vary dramatically from that of the bulk material. Nanoceria's redox properties can be tuned by choice of method of preparation, particle size, nature and level of dopant, particle shape and surface chemistry. The two oxidation states of the cerium element in the lattice make possible the formation of oxygen vacancies which are essential to the high reactivity of the material, its oxygen buffering capability and thus its ability to act as a catalyst for both oxidation and reduction reactions. Ceria has important commercial utility in the areas of chemical mechanical polishing and planarization, catalytic converters and diesel oxidation catalysts, intermediate temperature solid oxide fuel cells and sensors. Its potential future uses include chemical looping combustion, photolytic and thermolytic water splitting for hydrogen production and as a therapeutic agent for the treatment of certain human diseases. We have seen that the method of synthesis, particle size, stabilizing corona, and purity dictate where it is used commercially. Finally, in regards to the prescient words of Dr. Feynman, we note that while there is indeed “plenty of room at the bottom”, there quite possibly exists an optimal nanoceria size of between 2–3 nm that provides maximal reactivity and thermodynamic stability.

Graphical abstract: Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom?

Article information

Article type
Tutorial Review
Submitted
02 May 2014
Accepted
01 Sep 2014
First published
10 Sep 2014

Environ. Sci.: Nano, 2014,1, 390-405

Author version available

Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom?

K. Reed, A. Cormack, A. Kulkarni, M. Mayton, D. Sayle, F. Klaessig and B. Stadler, Environ. Sci.: Nano, 2014, 1, 390 DOI: 10.1039/C4EN00079J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements