Volume 172, 2014

Multifunctional structural energy storage composite supercapacitors

Abstract

This paper addresses the challenge of producing multifunctional composites that can simultaneously carry mechanical loads whilst storing (and delivering) electrical energy. The embodiment is a structural supercapacitor built around laminated structural carbon fibre (CF) fabrics. Each cell consists of two modified structural CF fabric electrodes, separated by a structural glass fibre fabric or polymer membrane, infused with a multifunctional polymeric electrolyte. Rather than using conventional activated carbon fibres, structural carbon fibres were treated to produce a mechanically robust, high surface area material, using a variety of methods, including direct etching, carbon nanotube sizing, and carbon nanotube in situ growth. One of the most promising approaches is to integrate a porous bicontinuous monolithic carbon aerogel (CAG) throughout the matrix. This nanostructured matrix both provides a dramatic increase in active surface area of the electrodes, and has the potential to address mechanical issues associated with matrix-dominated failures. The effect of the initial reaction mixture composition is assessed for both the CAG modified carbon fibre electrodes and resulting devices. A low temperature CAG modification of carbon fibres was evaluated using poly(3,4-ethylenedioxythiophene) (PEDOT) to enhance the electrochemical performance. For the multifunctional structural electrolyte, simple crosslinked gels have been replaced with bicontinuous structural epoxy–ionic liquid hybrids that offer a much better balance between the conflicting demands of rigidity and molecular motion. The formation of both aerogel precursors and the multifunctional electrolyte are described, including the influence of key components, and the defining characteristics of the products. Working structural supercapacitor composite prototypes have been produced and characterised electrochemically. The effect of introducing the necessary multifunctional resin on the mechanical properties has also been assessed. Larger scale demonstrators have been produced including a full size car boot/trunk lid.

Associated articles

Article information

Article type
Paper
Submitted
27 Mar 2014
Accepted
14 May 2014
First published
27 Jun 2014

Faraday Discuss., 2014,172, 81-103

Author version available

Multifunctional structural energy storage composite supercapacitors

N. Shirshova, H. Qian, M. Houllé, J. H. G. Steinke, A. R. J. Kucernak, Q. P. V. Fontana, E. S. Greenhalgh, A. Bismarck and M. S. P. Shaffer, Faraday Discuss., 2014, 172, 81 DOI: 10.1039/C4FD00055B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements