Volume 176, 2014

Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics

Abstract

We report on our investigations on charge transport and recombination in TiO2-based mesoporous solar cells using PbI2 and various perovskite compositions, including CH3NH3PbI3, CH3NH3PbI2Br, CH3NH3PbIBr2, and CH3NH3PbBr3. The mesoporous TiO2 film is about 650 nm thick. Electron microscopy measurements show that no perovskite capping layer is formed on the top surface of the TiO2 film. Intensity-modulated photocurrent/photovoltage spectroscopies show that the electron diffusion coefficient and recombination lifetime are governed by the underlying mesoporous TiO2 film and thus do not depend on the perovskite composition. However, replacing the perovskite absorber with PbI2 leads to a diffusion coefficient that is about a factor of 5 slower than that in perovskite-based devices. We also find that TiCl4 treatment of the mesoporous TiO2 film prior to device fabrication substantially reduces the charge recombination kinetics in mesoporous perovskite solar cells.

Associated articles

Article information

Article type
Paper
Submitted
09 Jun 2014
Accepted
14 Jul 2014
First published
14 Jul 2014

Faraday Discuss., 2014,176, 301-312

Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics

Y. Zhao, A. M. Nardes and K. Zhu, Faraday Discuss., 2014, 176, 301 DOI: 10.1039/C4FD00128A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements