Control parameters for electrochemically relevant materials: the significance of size and complexity†
Abstract
This contribution is concerned with the control parameters for arriving at defined, electrochemically relevant materials. The treatment is precise as far as the equilibrium situation of simple crystals is concerned, but becomes more and more qualitative if the distance from equilibrium or the (structural or compositional) complexity increases. It proves useful to distinguish between in situ parameters and ex situ parameters, the number ratio of which decreases with increasing distance from equilibrium. A particularly complex situation is met if not only size, shape and phase distribution are important, but even morphological details are of relevance, as it is the case for modern battery electrodes (“electrochemical integrated circuits”). For such cases archetypical examples along with their advantages or disadvantages for electrochemical storage properties are discussed. In this context, special emphasis is placed upon the dimensionality and distribution topology of building elements.
- This article is part of the themed collection: Next-Generation Materials for Energy Chemistry