Volume 174, 2014

In situ formation of organic–inorganic hybrid nanostructures for photovoltaic applications

Abstract

The performance of hybrid (organic–inorganic) photovoltaic devices is critically dependent on the thin film morphology. This work studies the film formation process using the in situ thermal decomposition of a soluble precursor to form a well-distributed network of CdS nanoparticles within a poly(3-hexylthiophene) (P3HT) polymer matrix. Resonant Raman spectroscopy is used to probe the formation of the inorganic nanoparticles and the corresponding changes in the molecular order of the polymer. We find that the CdS precursor decomposes rapidly upon heating to 160 °C, but that this has a disruptive effect on the P3HT. The extent of this disruption can be controlled by adjusting the annealing temperature, and nanowire aggregates of P3HT are found to have increased susceptibility. Atomic force microscopy reveals that at high temperatures (>200 °C), cracks form in the film, resulting in a ‘plateau’-like microstructure. In order to retain the preferable ‘granular’ microstructure and to control the molecular disruption, low decomposition temperatures are needed. This work identifies a particular problem for optimising the hybrid thin film morphology and shows how it can be partially overcome.

Associated articles

Article information

Article type
Paper
Submitted
29 Jun 2014
Accepted
21 Jul 2014
First published
21 Jul 2014

Faraday Discuss., 2014,174, 267-279

In situ formation of organic–inorganic hybrid nanostructures for photovoltaic applications

S. Wood, O. Garnett, N. Tokmoldin, W. C. Tsoi, S. A. Haque and J. Kim, Faraday Discuss., 2014, 174, 267 DOI: 10.1039/C4FD00141A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements