Effect of food matrix microstructure on stomach emptying rate and apparent ileal fatty acid digestibility of almond lipids
Abstract
Almond lipids can be consumed in different forms such as nuts, oil-in-water emulsions or oil. The stomach emptying rate (SER) of almond lipids (0.2 g of fat per 2 mL of almond lipid suspension) as a function of the food matrix was studied using magnetic resonance spectroscopy based on the stomach emptying of a marker (AlCl3–6H2O) in the growing rat. Chyme and digesta samples were collected following serial gavaging (0.2 g of fat per 2 mL of almond lipid suspension) to study microstructural changes and determine the apparent ileal digestibility of almond fatty acids as a function of the native food matrix. The T(1/2) for the stomach emptying of crushed whole almonds and almond cream (194 ± 17 min and 185 ± 19 min, respectively) were not different (P > 0.05) from that of a gastric-stable Tween-oil emulsion (197 ± 19 min). The T(1/2) values for a sodium caseinate (NaCas)–oil emulsion (145 ± 11 min) and a gastric-unstable Span-oil emulsion (135 ± 7 min) were different (P < 0.05) from those for crushed whole almonds, almond cream and Tween-oil emulsion, while almond milk and oil emptied at an intermediate rate (157 ± 9 min and 172 ± 11 min, respectively). Extensively coalesced emulsions under gastric conditions (almond oil, almond cream and Span-oil) had lower (P < 0.05) overall apparent ileal fatty acid digestibility (85.8%, 75.8% and 74.3%, respectively) than crushed whole almonds, almond milk, NaCas–oil and Tween-oil emulsions (91.0%, 92.2%, 92.1% and 88.7%, respectively). The original food matrix and structural changes occurring within the gastrointestinal tract had an impact on SER and ileal fatty acid digestibility of the almond preparations.