Issue 10, 2014

Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice

Abstract

Defect in intestinal epithelial structure is a critical etiological factor of several intestinal diseases such as inflammatory bowel disease. The objective of this study was to evaluate the effect of grape seed extract (GSE), which contains a mixture of polyphenols, on ileal mucosal structure and inflammation in interleukin (IL)-10-deficient mice, a common model for studying inflammatory bowel disease. Wild-type and IL-10-deficient mice were fed GSE at 0 or 1% (based on dry feed weight) for 16 weeks. GSE supplementation decreased crypt depth and increased (P < 0.05) the ratio of villus/crypt length in the terminal ileum. Consistently, the dietary GSE decreased (P < 0.05) proliferation and enhanced (P < 0.05) differentiation of epithelial cells. These changes in gut epithelium were associated with the suppression of nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling. Furthermore, compared with WT mice, IL-10 deletion promoted beclin-1 and AMPK expression, both of which were decreased to normal by GSE supplementation. These changes were associated with alterations in epithelial barrier function as indicated by reduced pore forming claudin-2 protein expression and increased barrier forming claudin-1 protein expression in the ileum of GSE supplemented mice. In summary, our data indicates that GSE exerts protective effects to the ileal epithelial structure in IL-10-deficient mice possibly through the suppression of inflammatory response.

Graphical abstract: Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice

Article information

Article type
Paper
Submitted
21 May 2014
Accepted
26 Jul 2014
First published
28 Jul 2014

Food Funct., 2014,5, 2558-2563

Author version available

Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice

G. Yang, H. Wang, Y. Kang and M. Zhu, Food Funct., 2014, 5, 2558 DOI: 10.1039/C4FO00451E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements