Issue 3, 2014

Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment

Abstract

Cell-based high throughput drug screening accelerates the pace of drug discovery which is routinely operated on planar high-density multi-well plates with sophisticated robotic liquid-dispensing systems for cell seeding and drug administration. Considerable efforts have been made to upgrade in vitro cellular models from 2D to a more biomimetic 3D configuration. For instance, in anti-cancer drug screening, tumor spheroids are increasingly applied as a gold-standard 3D model exhibiting cellular behaviors and drug responses distinguishable from the 2D counterpart. However, translation of spheroids to high throughput drug screening is challenging since pre-formation of spheroids and subsequent translocation to multi-well plates for drug testing are usually uncontrollable and time/reagent consuming and cell loss is inevitable during medium exchange for drug testing. Here we present an off-the-shelf micro-scaffold array chip which enables high throughput 3D cell culture, drug administration and quantitative in situ assays entirely on the same chip. The sponge-like micro-scaffolds functioned both as absorbents to realize parallel auto-loading of cells or drugs and as barriers to prevent cell loss during medium exchange via centrifugation. Rapid manual loading of cell suspensions or drugs into the 96 isolated micro-scaffolds on the chip was achieved in the timescale of several seconds, meanwhile with total medium consumption reduced to the order of microliters. Proof of concept demonstration of drug cytotoxicity testing was performed on multiple cancer cells using common benchtop equipment, making it accessible to most biomedical labs with basic cell culture setups. Higher cellular drug resistance was constantly obtained with this platform compared to the planar cultures, which was partially attributed to the malignant phenotype of cancer cells yielded by enhanced cell–matrix interactions in the micro-scaffolds. Interestingly, the high drug resistance of 3D cultured cells in the micro-scaffold was shown to be density-independent in contrast to the density-dependent drug response for 2D cultured cells, indicating intrinsic differences between the two culture models. This platform is expected to facilitate upgrade of the current cell-based high throughput drug testing to the 3D level and be widely applicable across various disciplines.

Graphical abstract: Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2013
Accepted
21 Oct 2013
First published
21 Oct 2013

Lab Chip, 2014,14, 471-481

Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment

X. Li, X. Zhang, S. Zhao, J. Wang, G. Liu and Y. Du, Lab Chip, 2014, 14, 471 DOI: 10.1039/C3LC51103K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements