Issue 6, 2014

Real-time enzyme-digesting identification of double-strand DNA in a resonance-cantilever embedded micro-chamber

Abstract

A novel direct identification of double-strand DNA is proposed by using real-time enzyme-digestion in a resonant-cantilever embedded microfluidic chip. The new gene-level detection method is expected to replace the conventional DNA-hybridization based gene-detection that suffers from not only nonspecific adsorption induced false-positives but also complicated single-strand DNA preparation and hybridization. Since a detected DNA chain features a unique cutting site for a certain restriction-enzyme, the accurately cut-off mass (representing the length of the digested segment) can be online recorded by the frequency-shift signal of the resonant micro-cantilever sensor. This enzyme-digestion technique is confirmed by experimental identification of the stx2 gene of E. coli O157:H7. The direct-PCR sample is directly analyzed by using our lab-made cantilever-embedded microfluidic-chip. The 3776 bp DNA is immobilized via biotin–streptavidin binding and the added mass is recorded by a frequency-decrease of 15.9 kHz within 10 min. Then, with EcoRV-enzyme digestion at the site of 2635 bp, the cut-off mass is real-time detected by a frequency-increase of 10.2 kHz within 6 min. The detected frequency-shift ratio of 15.9/10.2 = 64.2% is consistent with the length ratio between the cut-off fragment and the whole DNA chain (2635/3776 = 69.8%). Hence, the simple and accurate double-strand detection method is verified experimentally.

Graphical abstract: Real-time enzyme-digesting identification of double-strand DNA in a resonance-cantilever embedded micro-chamber

Article information

Article type
Paper
Submitted
20 Nov 2013
Accepted
17 Dec 2013
First published
17 Dec 2013

Lab Chip, 2014,14, 1206-1214

Real-time enzyme-digesting identification of double-strand DNA in a resonance-cantilever embedded micro-chamber

T. Xu, H. Yu, P. Xu, W. Xu, W. Chen, C. Chen and X. Li, Lab Chip, 2014, 14, 1206 DOI: 10.1039/C3LC51294K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements