Issue 13, 2014

Donut-shaped chambers for analysis of biochemical processes at the cellular and subcellular levels

Abstract

In order to study cell–cell variation with respect to enzymatic activity, individual live cell analysis should be complemented by measurement of single cell content in a biomimetic environment on a cellular scale arrangement. This is a challenging endeavor due to the small volume of a single cell, the low number of target molecules and cell motility. Micro-arrayed donut-shaped chambers (DSCs) of femtoliter (fL), picoliter (pL), and nanoliter (nL) volumes have been developed and produced for the analysis of biochemical reaction at the molecular, cellular and multicellular levels, respectively. DSCs are micro-arrayed, miniature vessels, in which each chamber acts as an individual isolated reaction compartment. Individual live cells can settle in the pL and nL DSCs, share the same space and be monitored under the microscope in a noninvasive, time-resolved manner. Following cell lysis and chamber sealing, invasive kinetic measurement based on cell content is achieved for the same individual cells. The fL chambers are used for the analysis of the same enzyme reaction at the molecular level. The various DSCs were used in this proof-of-principle work to analyze the reaction of intracellular esterase in both primary and cell line immune cell populations. These unique DSC arrays are easy to manufacture and offer an inexpensive and simple operating system for biochemical reaction measurement of numerous single cells used in various practical applications.

Graphical abstract: Donut-shaped chambers for analysis of biochemical processes at the cellular and subcellular levels

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2013
Accepted
09 Apr 2014
First published
15 May 2014

Lab Chip, 2014,14, 2226-2239

Author version available

Donut-shaped chambers for analysis of biochemical processes at the cellular and subcellular levels

N. Zurgil, O. Ravid-Hermesh, Y. Shafran, S. Howitz, E. Afrimzon, M. Sobolev, J. He, E. Shinar, R. Goldman-Levi and M. Deutsch, Lab Chip, 2014, 14, 2226 DOI: 10.1039/C3LC51426A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements