Issue 16, 2014

Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device

Abstract

Plasma is a complex substance that contains proteins and circulating nucleic acids and viruses that can be utilised for clinical diagnostics, albeit a precise analysis depends on the plasma being totally free of cells. We proposed the use of a dielectrophoresis (DEP)-active hydrophoretic method to isolate plasma from blood in a high-throughput manner. This microfluidic device consists of anisotropic microstructures embedded on the top of the channel which generate lateral pressure gradients while interdigitised electrodes lay on the bottom of the channel which can push particles or cells into a higher level using a negative DEP force. Large and small particles or cells (3 μm and 10 μm particles, and red blood cells, white blood cells, and platelets) can be focused at the same time in our DEP-active hydrophoretic device at an appropriate flow rate and applied voltage. Based on this principle, all the blood cells were filtrated from whole blood and then the plasma was extracted with a purity of 94.2% and a yield of 16.5% at a flow rate of 10 μL min−1. This solved the challenging problem caused by the relatively low throughput of the DEP based device. Our DEP-active hydrophoretic device is a flexible and tunable system that can control the lateral positions of particles by modulating the external voltages without redesigning and fabricating a new channel, and because it is easy to operate, it is easily compatible with other microfluidic platforms that are used for further detection.

Graphical abstract: Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device

Article information

Article type
Paper
Submitted
19 Mar 2014
Accepted
26 May 2014
First published
27 May 2014

Lab Chip, 2014,14, 2993-3003

Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device

S. Yan, J. Zhang, G. Alici, H. Du, Y. Zhu and W. Li, Lab Chip, 2014, 14, 2993 DOI: 10.1039/C4LC00343H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements