Issue 14, 2014

Dual-pore glass chips for cell-attached single-channel recordings

Abstract

While high-throughput planar patch-clamp instruments are now established to perform whole-cell recordings for drug screening, the conventional micropipette-based approach remains the gold standard for performing cell-attached single-channel recordings. Generally, planar platforms are not well-suited for such studies due to excess noise resulting from low seal resistances and the use of substrates with poor dielectric properties. Since these platforms tend to use the same pore to position a cell by suction and establish a seal, biological debris from the cell suspension can contaminate the pore surface prior to seal formation, reducing the seal resistance. Here, femtosecond laser ablation was used to fabricate dual-pore glass chips optimized for use in cell-attached single-channel recordings that circumvent this problem by using different pores to position a cell and to establish a seal. This dual-pore design also permitted the use of a relatively small patch aperture (D ~ 150 to 300 nm) that is better-suited for establishing high-resistance seals than the micropores used typically in planar patch-clamp setups (D ~ 1 to 2 μm) without compromising the ability of the device to position a cell. Taking advantage of the high seal resistances and low capacitive and dielectric noise realized using glass substrates, patch-clamp experiments with these dual-pore chips consistently achieved high seal resistances (rate of gigaseal formation = 61%, mean seal resistance = 53 GΩ), maintained gigaseals for prolonged durations (up to 6 hours), achieved RMS noise values as low as 0.46 pA at 5 kHz bandwidth, and enabled single-channel recordings in the cell-attached configuration that are comparable to those obtained by conventional patch-clamp.

Graphical abstract: Dual-pore glass chips for cell-attached single-channel recordings

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2014
Accepted
02 May 2014
First published
02 May 2014

Lab Chip, 2014,14, 2410-2417

Author version available

Dual-pore glass chips for cell-attached single-channel recordings

B. R. Bruhn, H. Liu, S. Schuhladen, A. J. Hunt, A. Mordovanakis and M. Mayer, Lab Chip, 2014, 14, 2410 DOI: 10.1039/C4LC00370E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements