Issue 18, 2014

Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor

Abstract

Microfluidic bioreactors are expected to impact cell therapy and biopharmaceutical production due to their ability to control cellular microenvironments. This work presents a novel approach for continuous cell culture in a microfluidic system. Microcarriers (i.e., microbeads) are used as growth support for anchorage-dependent mammalian cells. This approach eases the manipulation of cells within the system and enables harmless extraction of cells. Moreover, the microbioreactor uses a perfusion function based on the biocompatible integration of a porous membrane to continuously feed the cells. The perfusion rate is optimized through simulations to provide a stable biochemical environment. Thermal management is also addressed to ensure a homogeneous bioreactor temperature. Eventually, incubator-free cell cultures of Drosophila S2 and PC3 cells are achieved over the course of a week using this bioreactor. In future applications, a more efficient alternative to harvesting cells from microcarriers is also anticipated as suggested by our positive results from the microcarrier digestion experiments.

Graphical abstract: Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2014
Accepted
26 Jun 2014
First published
27 Jun 2014

Lab Chip, 2014,14, 3510-3518

Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor

F. Abeille, F. Mittler, P. Obeid, M. Huet, F. Kermarrec, M. E. Dolega, F. Navarro, P. Pouteau, B. Icard, X. Gidrol, V. Agache and N. Picollet-D'hahan, Lab Chip, 2014, 14, 3510 DOI: 10.1039/C4LC00570H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements