Issue 3, 2014

Graphyne as the membrane for water desalination

Abstract

Permeation through membrane with pores is important in the choice of materials for filtration and separation techniques. Here, we report by the molecular dynamics simulations that a single-layer graphyne membrane can be impermeable to salt ions, while it allows the permeation of water molecules. The salt rejection and water permeability of graphyne are closely related to the hydrostatic pressure, type of graphyne membrane, and the salt concentration of solution, respectively. By analyzing hydration shell structure, we found that the average coordination number of ions plays a key role in water purification. Our calculation showed that the salt rejection of the graphyne-3 membrane is the best and it can keep an ideal rate of 100% in consideration cases. In comprehensive evaluation of both salt rejection and permeability, the graphyne-4 is a perfect purification membrane. To sum up, our results indicated that the graphynes (graphyne-3 and -4) not only have higher salt rejection but also possess higher water permeability which is several orders of magnitude higher than conventional reverse osmosis membranes. The single-layer graphyne membrane may have a great potential application as a membrane for water purification.

Graphical abstract: Graphyne as the membrane for water desalination

Article information

Article type
Paper
Submitted
18 Sep 2013
Accepted
07 Nov 2013
First published
11 Nov 2013

Nanoscale, 2014,6, 1865-1870

Graphyne as the membrane for water desalination

J. Kou, X. Zhou, H. Lu, F. Wu and J. Fan, Nanoscale, 2014, 6, 1865 DOI: 10.1039/C3NR04984A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements