Issue 9, 2014

Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes

Abstract

Reduced graphene oxide (RGO) has been employed as an electrode for a series of vertically structured photodetectors. Compared with mechanically exfoliated or chemical vapor deposited graphene, RGO possesses more oxygen containing groups and defects, which are proved to be favorable to enhance the performance of photodetectors. As a matter of fact, RGO with different reduction levels can be readily obtained by varying the annealing temperature. The synthesis procedures for the RGO material are suitable for large scale production and its performance can be effectively improved by functionalization or element doping. For RGO-based devices, the Schottky junction properties and photoelectric conversion have been investigated, primarily by analyzing their current–voltage characteristics. Subsequently, the ON/OFF ratio, responsivity and detectivity of the photodetectors were closely examined, proving that the RGO material could be effectively utilized as the electrode material; also, their relationship with the RGO reduction levels has also been explored. By analyzing the response/recovery speed of the RGO-based photodetectors, we have studied the effects of oxygen-containing functional groups and crystalline defects on the photoelectric conversion.

Graphical abstract: Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2014
Accepted
18 Feb 2014
First published
25 Feb 2014

Nanoscale, 2014,6, 4909-4914

Author version available

Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes

M. Zhu, X. Li, Y. Guo, X. Li, P. Sun, X. Zang, K. Wang, M. Zhong, D. Wu and H. Zhu, Nanoscale, 2014, 6, 4909 DOI: 10.1039/C4NR00056K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements