The synthesis of CeO2 nanospheres with different hollowness and size induced by copper doping†
Abstract
In this paper, copper-doped ceria oxides with different hollowness and size are fabricated by changing the Cu2+ doping concentration in the mixed water-glycol system. Results show that the copper-doped CeO2 oxides undergo a morphology transformation from the solid nanospheres to core–shell, then to hollow nanospheres with the increase of the Cu2+ doping concentration. The corresponding size becomes smaller during this transfer process. The Cu2+ doping induced acceleration in the nucleation and growth process is further investigated. The resultant Cu2+-doped CeO2 oxides exhibit enhanced CO conversion performance and better reduction behaviors.