Bottom-up nanostructured bulk silicon: a practical high-efficiency thermoelectric material†
Abstract
The effectiveness of thermoelectric (TE) materials is quantified by the dimensionless figure of merit (zT). An ideal way to enhance zT is by scattering phonons without scattering electrons. Here we show that, using a simple bottom-up method, we can prepare bulk nanostructured Si that exhibits an exceptionally high zT of 0.6 at 1050 K, at least three times higher than that of the optimized bulk Si. The nanoscale precipitates in this material connected coherently or semi-coherently with the Si matrix, effectively scattering heat-carrying phonons without significantly influencing the material's electron transport properties, leading to the high zT.