Issue 38, 2014

A theoretical study on the mechanisms of the reactions between 1,3-dialkynes and ammonia derivatives for the formation of five-membered N-heterocycles

Abstract

The reactions between 1,3-dialkynes and ammonia derivatives (such as hydrazine and hydroxylamine) for the formation of five-membered N-heterocycles (i.e. 3,5-disubstituted pyrazole and 3,5-disubstituted isoxazole) have been investigated using the density functional theory (DFT) method. The calculated results indicate that the favorable mechanism of this kind of reaction generally contains four processes: (1) the Cope-type hydroamination reaction between the reactants coupled with the hydrazine/hydroxylamine-assisted proton transfer process or the trimolecular hydroamination reaction via a six-membered transition state, (2) the bimolecular proton transfer process for the formation of an allenyl oxime intermediate, (3) the cyclization process, and (4) another bimolecular or hydrazine/hydroxylamine-assisted proton transfer process to afford the final products (3,5-disubstituted pyrazole and 3,5-disubstituted isoxazole). The computational results demonstrate that the novel bimolecular proton transfer process occurs in a stepwise manner and the first step of the novel bimolecular proton transfer process is calculated to be the rate-determining step in both the reactions, and their energy barriers are 28.45 kcal mol−1 associated with the formation of 3,5-disubstituted pyrazole and 31.07 kcal mol−1 associated with the formation of 3,5-disubstituted isoxazole. In particular, the novel bimolecular proton transfer process has reasonably explained in detail on how and why this kind of reaction occurs, and this would provide valuable clues for the rational design of Brønsted acid/base catalysts to promote the synthesis of the five-membered N-heterocyclic compounds.

Graphical abstract: A theoretical study on the mechanisms of the reactions between 1,3-dialkynes and ammonia derivatives for the formation of five-membered N-heterocycles

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2014
Accepted
20 Jun 2014
First published
20 Jun 2014

Org. Biomol. Chem., 2014,12, 7503-7514

A theoretical study on the mechanisms of the reactions between 1,3-dialkynes and ammonia derivatives for the formation of five-membered N-heterocycles

Y. Wang, D. Wei, W. Zhang, Y. Wang, Y. Zhu, Y. Jia and M. Tang, Org. Biomol. Chem., 2014, 12, 7503 DOI: 10.1039/C4OB01015A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements