Issue 1, 2014

Synthesis characterization and bulk-heterojunction photovoltaic applications of new naphtho[1,2-b:5,6-b′]dithiophene–quinoxaline containing narrow band gap D–A conjugated polymers

Abstract

Alternating donor-acceptor (D–A) π-conjugated copolymers, poly[2,7-bis(3-hexadecylthiophene-2-yl)naphtho[1,2-b:5,6-b′]dithiophene-5,5′-diyl-alt-5,8-bis(4-hexadecylthiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)quinoxaline-5,5′-diyl] (PTNDTT-QX-I) and poly[2,7-bis(3-hexadecylthiophene-2-yl)naphtho[1,2-b:5,6-b′]dithiophene-5,5′-diyl-alt-5,8-bis(thiophen-2-yl)-2,3-bis(3-(octyloxy)phenyl)quinoxaline-5,5′-diyl] (PTNDTT-QX2-II), were designed and synthesized based on the same thiophene-bridged naphtho[1,2-b:5,6-b′]dithiophene donor moiety, differing only at the quinoxaline acceptor counterpart by either additional electron-donating alkyl chain substitution in the thienyl ring attached to the quinoxaline base (in PTNDTT-QX-I) or a change in the location of the outward alkoxy side chain substituent of the phenyl rings (to the meta-position) adjoining the quinoxaline base (in PTNDTT-QX-II). The effect of alkyl chain positioning on the thermal, optical, and electrochemical properties, as well as field effect transistors and solar cell performances of the copolymers, were investigated and the results were compared with a previously published copolymer, PTNDTT-QX, which features a similar quinoxaline unit but is alkoxy substituted at the position para to its peripheral phenyl rings. Both polymers exhibited excellent thermal stability, with thermal decomposition temperatures over 400 °C. They absorbed light in the 300–700 nm range and exhibited optical band gaps of about 1.70 and 1.73 eV for PTNDTT-QX-I and PTNDTT-QX-II, respectively. Precise control of the alkyl/alkoxy chain positioning has made it possible to tune the HOMO energy levels between −5.14 and −5.29 eV and the LUMO energy levels between −3.44 and −3.55 eV. Bulk heterojunction photovoltaic devices of the structure ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al were fabricated by using the polymers as the donors and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) as the acceptor. Power conversion efficiencies (PCEs) of 1.28% and 1.61% respectively were achieved for the photovoltaic devices based on PTNDTT-QX-I/PC71BM and PTNDTT-QX-II/PC71BM under AM 1.5 G simulated 1-sun solar illumination.

Graphical abstract: Synthesis characterization and bulk-heterojunction photovoltaic applications of new naphtho[1,2-b:5,6-b′]dithiophene–quinoxaline containing narrow band gap D–A conjugated polymers

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2013
Accepted
30 Jul 2013
First published
31 Jul 2013

Polym. Chem., 2014,5, 132-143

Synthesis characterization and bulk-heterojunction photovoltaic applications of new naphtho[1,2-b:5,6-b′]dithiophene–quinoxaline containing narrow band gap D–A conjugated polymers

P. Dutta, H. Park, W. Lee, I. N. Kang and S. Lee, Polym. Chem., 2014, 5, 132 DOI: 10.1039/C3PY00911D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements