Dithienosilole-based all-conjugated block copolymers synthesized by a combination of quasi-living Kumada and Negishi catalyst-transfer polycondensations†
Abstract
Herein, we present a quasi-living Negishi-type catalyst-transfer polycondensation of a zinc–organic DTS-based monomer which provides an access to narrowly distributed poly(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole (PDTS) with controlled molecular weight. The synthesis of well-defined all-conjugated diblock copolymers containing a PDTS block was accomplished by a combination of Kumada and Negishi catalyst-transfer polycondensations (KCTP and NCTP, respectively). Particularly, it was shown that living P3HT chains obtained by KCTP of magnesium–organic thiophene-based monomer efficiently initiate NCTP of zinc–organic DTS-based monomer. The purity of the DTS-based monomer was found to be a crucial factor for achieving a clean chain-growth polymerization process. A combination of physico-chemical methods was used to prove the success of the block copolymerization.