Issue 1, 2014

Photo-crosslinkable polymer gate dielectrics for hysteresis-free organic field-effect transistors with high solvent resistance

Abstract

Poly(N-(4-hydroxyphenyl)maleimide-co-4-vinylphenol) (PHPMIVP) and its derivatives were developed for polymer gate dielectrics exhibiting high chemical resistance to various organic solvents and hysteresis-free operations in FET. PHPMIVP were modified with photo-reactive side-groups including cinnamoyl (PHPMIVP-C), methacroyl (PHPMIVP-M) or 4-(6-(7-coumarinyloxyl)hexyloxy)benzoyl (PHPMIVP-CHB). Especially, PHPMIVP-CHB exhibited high thermal stability and very strong chemical resistance to various organic solvents including acetone, THF, tetraline, chloroform and chlorobenzene, which allow forming dielectric layers and semiconducting layers by sequential spin-casting processes without deterioration of device performance. Neither breakdown-voltage shift nor change in the leakage current density curve was observed after treating PHPMIVP-CHB film with various organic solvents, photoresist stripper (PRS2000) or Au etchant (KI solution). The field-effect transistors fabricated by sequential spin-casting of PHPMIVP-CHB insulating layers and PQTBTz-C12 semiconducting layers showed charge mobility with μFET = 0.029 cm2 V−1 s−1 and on/off ratio = 106 which are almost 10 times better than those of PQTBTz-C12 FETs fabricated on other polymers such as PHPMIVP, PHPMIVP-C and PHPMIVP-M.

Graphical abstract: Photo-crosslinkable polymer gate dielectrics for hysteresis-free organic field-effect transistors with high solvent resistance

Article information

Article type
Paper
Submitted
25 Jul 2013
Accepted
30 Oct 2013
First published
01 Nov 2013

RSC Adv., 2014,4, 293-300

Photo-crosslinkable polymer gate dielectrics for hysteresis-free organic field-effect transistors with high solvent resistance

E. K. Lee, J. Y. Kim, J. W. Chung, B. Lee and Y. Kang, RSC Adv., 2014, 4, 293 DOI: 10.1039/C3RA43890B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements