Conical nanopores fabricated via a pressure-biased chemical etch
Abstract
Controlling the size and shape of nanopores in polymer membranes can significantly impact transport of molecular or ionic species through these membranes. Here we describe a facile method to controllably form conical nanopores in ion-tracked polycarbonate membranes. Commercial polycarbonate ion-tracked membranes were placed between a concentrated alkaline solution and an acidic solution. By varying the height of the acidic solution, the hydrostatic pressure was controlled, regulating the acid flux through the nanopores. The resulting asymmetric etching of the membrane produced conical pores with controllable aspect ratios. Scanning electron microscopy of both the pores and nickel nanostructures electrolessly templated in the pores confirms their conical shape. This safe, straightforward approach obviates the need to use large voltages, currents, and/or plasma etching equipment traditionally employed to create conical nanopores.