Hydrothermal synthesis of Co3O4 with different morphologies towards efficient Li-ion storage†
Abstract
In this study, Co3O4 with different morphologies (leaf, sheet, and cube) are successfully synthesized by a facile hydrothermal method followed by calcination treatment. Representative samples with different morphological structures are compared and evaluated as anode materials in lithium-ion batteries. Relative to the Co3O4-sheet and Co3O4-cube samples, the Co3O4-leaf samples exhibit excellent electrochemical performance with high storage capacity (1245 mA h g−1 after 40 cycles at 0.1 C) and superior rate capability (0.1, 0.2, 0.5, 1, and 2 C for 1028, 1085, 1095, 1038, and 820 mA h g−1, respectively); interestingly, the thinner the samples are, the better their performance. Moreover, assisted by characterization by cyclic voltammetry and electrochemical impedance spectroscopy, we draw a conclusion that the ultra-thin structures result in shorter path lengths for the transport of lithium ions and electrons, benefiting conductivity and fast charge–discharge rates. More importantly, for Co3O4, the respective structure's degree of thickness has a great effect on the electrochemical performance in lithium-ion batteries. This new concept might be extended to prepare other anode and cathode materials for advanced energy storage and conversion devices.