Insights into the nature of M
E bonds in [(PMe3)4M
E(Mes)]+ (M = Mo, W) and [(PMe3)5W
E(Mes)]+: a dispersion-corrected DFT study†
Abstract
Structures and bonding energy analysis of terminal cationic metal–ylidyne complexes [(PMe3)4ME(Mes)]+ (M = Mo, W) and [(PMe3)5W
E(Mes)]+ (E = Si, Ge, Sn, Pb) were investigated by DFT, DFT-D3 and DFT-D3(BJ) methods using BP86, PBE and PW91 functionals. The Nalewajski–Mrozek (N–M) bond orders and Pauling bond orders show that the M–E bonds in the studied cationic complexes are essentially M
E triple bonds. Atomic orbital populations reveal that the out-of-plane π-bonding in all complexes is stronger than the in-plane π-bonding. The bonding of the M–E σ-bond is quite strong, as is the total M–E π-bond strength, and increases upon going from molybdenum to tungsten. The contribution of the orbital interactions ΔEorb is significantly larger (58–63%) than the electrostatic contributions ΔEelstat in all the complexes studied. The absolute values of the bond dissociation energies decrease in the order Si > Ge > Sn > Pb. The D3-dispersion energies with zero-damping are in the range 13.0–17.9 kcal mol−1 (BP86), 7.1–10.6 kcal mol−1 (PBE) and 7.7–10.6 kcal mol−1 (PW91), which are smaller than the corresponding DFT-D3(BJ) energies of 21.0–24.6 kcal mol−1 (BP86), 9.9–13.6 kcal mol−1 (PBE) and 10.6–13.6 kcal mol−1 (PW91). The percentage dispersion-corrections to the bond dissociation energies increase as E becomes heavier. The effects of relativistic core contractions in heavier nuclei, i.e. tungsten and lead, are also evaluated.