Issue 20, 2014

Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene

Abstract

Transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes were immobilized onto graphene oxide previously functionalized with 3-aminopropyltriethoxysilane (3-APTES). X-ray diffraction (XRD), IR spectroscopy, thermal gravimetric analyses (TGA) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) confirmed the successful incorporation of the metal Schiff base onto the graphene oxide. N2 adsorption–desorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the intact structure of the graphene oxide. Catalytic results showed that the immobilized copper(II) Schiff base complex catalyst was more active than the immobilized iron(II), cobalt(II) and oxovanadium(IV) complexes in the epooxidation of styrene. Above 94% styrene conversion and excellent ∼99% selectivity to the epoxide could be achieved over the copper(II) Schiff base heterogeneous catalyst in the epoxidation of styrene using tert-butyl hydroperoxide (TBHP) as oxidant after 7 h reaction. The recycling experiment results indicated that the catalyst could maintain very high styrene conversion (>93%) and epoxide selectivity (>99%) even after being used for four cycles.

Graphical abstract: Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene

Article information

Article type
Paper
Submitted
18 Dec 2013
Accepted
30 Jan 2014
First published
31 Jan 2014

RSC Adv., 2014,4, 9990-9996

Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene

H. Su, Z. Li, Q. Huo, J. Guan and Q. Kan, RSC Adv., 2014, 4, 9990 DOI: 10.1039/C3RA47732K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements