Issue 34, 2014

Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA

Abstract

A novel organic–inorganic hybrid flame retardant (DOPA–ATH), which was prepared via reacting dibenzo[c,e][1,2]oxaphosphinic acid (DOPA) with aluminum trihydroxide (ATH), was incorporated in ethylene-vinyl acetate copolymer (EVA) to improve its flame retardance. The structure, morphology and thermal stability of the hybrid flame retardant were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results suggested that DOPA was grafted onto ATH successfully, therefore resulting in higher thermostability than ATH. The flame retardance and burning behaviour of EVA with DOPA–ATH were also studied using limiting oxygen index (LOI), Underwriter laboratory 94 vertical burning test (UL-94 V) and cone calorimeter test (CCT). Results of UL-94 tests and LOI tests showed that the flame retardance of EVA/DOPA–ATH was better than EVA/ATH binary and EVA/DOPA/ATH ternary flame-retardant composites. The data obtained from the CCT showed that the peak heat release rate (PHRR) of EVA with the addition of 50 wt% DOPA–ATH was reduced by about 25% comparing with EVA with equivalent ATH. Total heat release (THR) and total smoke production (TSP) were reduced remarkably as well. The thermogravimetric analysis (TGA) data showed that the thermal stability of EVA/DOPA–ATH was improved with increased initial decomposition temperature and char residue. SEM observations of cryogenically fractured and tension fractured surfaces showed that EVA/DOPA–ATH had better interfacial interaction comparing with those of EVA/ATH and EVA/DOPA/ATH, which resulted in better elongation at break and tensile strength.

Graphical abstract: Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA

Article information

Article type
Paper
Submitted
24 Jan 2014
Accepted
31 Mar 2014
First published
31 Mar 2014

RSC Adv., 2014,4, 17812-17821

Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA

L. Yu, L. Chen, L. Dong, L. Li and Y. Wang, RSC Adv., 2014, 4, 17812 DOI: 10.1039/C4RA00700J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements