Effect of Al2O3 coverage on SiC particles for electrically insulated polymer composites with high thermal conductivity
Abstract
Al2O3-covered SiC/epoxy composites were prepared using a simple sol–gel method. The results of FE-SEM, TGA, and XPS indicated that the surfaces of the SiC particles had a large, dense, and homogenous distribution of Al2O3. It was found that the introduction of Al2O3 on the SiC surface improved the interfacial adhesion between the epoxy matrix and SiC particles; this resulted in an increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler–matrix interface was decreased. In addition, Al2O3-covered SiC composites showed decreased electrical conductivity owing to decreased electron tunneling compared with raw SiC composites. Thus, the Al2O3-covered SiC composites prepared in the present work could prove to be desirable polymer composites to be used as thermal interface materials that are employed in the electronics industry.