Poly(dimethylsiloxane) as a pre-coating in layer-by-layer films containing phosphotungstate nanoclusters electrochemically sensitive toward s-triazines†
Abstract
One of the major advantages of the Layer-by-Layer (LbL) deposition technique is the possible control of molecular architecture, not only to achieve optimized properties but also to seek synergy among different materials. In this study, LbL films containing nanoclusters of a Keggin type polyoxometalate, phosphotungstic acid (HPW), alternated with the polycation poly(allylamine hydrochloride) (PAH) were deposited on indium-tin oxide (ITO) substrates. The electrochemical properties of the hybrid LbL film investigated in acidic conditions indicated no significant desorption of HPW, when a layer of poly(dimethylsiloxane) terminated with 3-aminopropyl groups (PDMS) was previously deposited on the ITO substrate. Such effect occurred because PDMS prevents desorption of HPW from the hybrid film, as shown by X-ray Photoelectron Spectroscopy (XPS) analyses. The porous structures of the films were revealed by Fourier transform infrared reflection absorption spectroscopy, scanning electron microscopy and XPS. PDMS/PAH as a pre-coating allowed the HPW/PAH films to be sensitive to the electrochemical detection of the triazines atrazine and melamine. In conclusion, the precise control of the LbL films architecture is important to develop opportunities for new applications.