Issue 36, 2014

Polystyrene-block-poly(methylmethacrylate) composite material film as a gate dielectric for plastic thin-film transistor applications

Abstract

We report a simple approach to fabricate an organic–inorganic hybrid gate insulator based n-type thin-film transistor (TFT) on a plastic polyimide (PI) sheet at room temperature using an appropriate composition of commercially available polymers and block copolymer surfactant. The composite material film namely; polystyrene-block-poly(methylmethacrylate) (PS-b-PMMA) is readily deposited as a gate dielectric with zinc oxide (ZnO) as a semiconductor layer. This new dielectric material film exhibits high surface energy, high air stability, very low leakage current density and better dielectric constant as compared to the conventional polymer dielectrics. This plastic ZnO–TFT combines the advantages of a high-mobility transparent inorganic semiconductor with an ultrathin high-capacitance and low-leakage PS-b-PMMA composite gate dielectric. Fourier transform infrared (FT-IR) spectrum analysis is used for the PS-b-PMMA film to confirm the presence of functional components in this composite material film. The contact angle measurements for three test liquids (e.g., distilled water, ethylene glycol and diiodomethane) reveal that the composite dielectric materials film is nearly hydrophobic and the calculated surface energy is 35.05 mJ m−2. The resulting TFT exhibits excellent operating characteristics at VDS = 10 V with a drain–source current on/off modulation ratio (Ion/Ioff) of 3.12 × 106 and a carrier mobility of 2.48 cm2 V−1 s−1. Moreover in the bending mode and in a normal environment, the device remained undistorted and shows better reliability and performance, while the thickness of PS-b-PMMA is about 28 nm. The results have suggested a new and easy approach for achieving transparent and functionally bendable optoelectronics devices.

Graphical abstract: Polystyrene-block-poly(methylmethacrylate) composite material film as a gate dielectric for plastic thin-film transistor applications

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2014
Accepted
02 Apr 2014
First published
03 Apr 2014

RSC Adv., 2014,4, 18493-18502

Author version available

Polystyrene-block-poly(methylmethacrylate) composite material film as a gate dielectric for plastic thin-film transistor applications

J. S. Meena, M. Chu, R. Singh, C. Wu, U. Chand, H. You, P. Liu, H. D. Shieh and F. Ko, RSC Adv., 2014, 4, 18493 DOI: 10.1039/C4RA01517G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements